

Stögra Antriebstechnik GmbH

Machtlfinger Straße 24 D-81379 München

Tel.: (089)15904000 Fax.: (089)15904009

SERS 01, SERS 06 und SERS 12

Version V

CANopen

Stepping motor power amplifier board with position control and CANopen interface

CANopen specific additions to the 'SERS installation and programming manual' for SERS with RS232 interface

edition December 2002 All rights reserved. Without written approval we allow no reprint nor partial copying. We reserve the right to make engineering changes, refinements and improvements. Mechanical and electrical ratings and dimensions are, therefore, subject to change without notice. no liability whatsoever is accepted.

Index

		Seite
1.	General notes	3
1.1	Short overview	3
1.2	CANopen implementation of the SERS	3
1.3	Modifications in comparison to the standard SERS-manual	4
2.	Assignment SERS parameters to CANopen profile	5
2.1	Standard CANopen parameter	5
2.2	Scaling	5
2.3	Positioning modes	5
2.4	PDO Data contents and transmission types	6
2.5	NMT command-specifier	6
2.6	Node status	7
2.7	Abort codes	7
2.8	Emergency data contents	8
2.8.1	Emergency error code	8
2.8.2	Error register	9
2.8.3	Error numbers "errno"	9
3.	Terminating resistor 120 Ohm	12

General notes Short overview

- the stepper motor control SERS...CAN is a 1-axis position controls with CANopen interface to drive 2-phases-stepper motors.
- all parameters, the allowed writ able identifiers and their default values are included in the file "**stoegra.eds**".
- the common (e.g. communication) parameters with index numbers until 0x1000 are defined according to the "CiA Draft Standard 301" (Application Layer and Communication Profile) from the "CAN in Automation e. V."
- Additionally the standard parameters of the "CANopen Device Profile for Drives and Motion Control" in the "CiA Draft Standard Proposal DSP-402" from Index 0x6000 are implemented.
- The implemented functions of the SERS...CAN are identically to the position control SERS with RS232 interface (for description see the standard SERS installation and programming manual)
- The CANopen-interface on the SERS is galvanically isolated.

1.2 CANopen Implementation in the SERS

- the used CAN device "SAJ1000" is filtering at the CANbus all messages which are for the own address, for not creating a buffer overflow in case of a high data intensity on the bus. Broadcast messages (NMT-telegrams) are not filtered.
- the drive interrogates the receive register at least all 2ms, and evaluates the messages.
- the input buffer of the device stores up to 64 bytes.
- there are used 11 Bit identifier.
- the drive type is "0x00040192" according to "DSP402", chapter "7.2.1".
- in the "manufacturer status" (Index 0x1002) at the high word there can be read the status class 2 (SERS-warnings P12) and in the low word the status class 1 (SERS-error P11). Resetting the status class 1 (error) can be done via the "control word" (6040) or via the manufacturer specific part.
- the drive includes 1 transmit PDO and 3 receive PDOs
- the drive accepts only a Sync-object with the COB-Id 0x80. The high bit is not relevant.
- all values are accepted as "comm cycle period" (1006), but they will be not stored or evaluated the value read is always 2000.
- the parameter "synchronous window length" will not be evaluated and read as 0.
- Node Guarding is implemented completely. A heart beat protocol is not implemented. The drive generates an emergency telegram at power on with the length 0 (old standard), and also a Node guard boot up (new standard).
- The identity object (1018) does not have a "Vendor ID", "Product Code" and serial number yet (edition January 2001).

Stögra

- "modes_of_operation" (6060) : the drive supports 1 "Profile Position Mode" and 6 "Homing Mode".
- "position_actual_value" (6064) can not be written (in contrary to the CAN standard)
- "software_position_limit" (607d) : the limits are not checked when writing the position command value, but only during movement.
- "feed_constant" (6092) allows only the value 1 for "shaft_revolutions" (subindex 2).
- "digital_inputs" (60fd) :
 - Bit 0 is the limit switch minus
 - Bit 1 is the limit switch plus
 - Bit 2 is the home switch
 - Bit 16 until Bit 23 are the digital inputs I1 until I8
 - Bit 24 is the stop switch
- "digital_outputs" (60fe) : Bit 16 until Bit 19 are the 4 outputs O1 until O4 of the SERS
- All parameters of the "SERS" (in case they do not match the standard CAN profile) can be written/read also via the manufacturer specific index range (0x2000 until 0x5fff). The file "stoegra.eds" includes the assignments index numbers → SERS parameter numbers.

1.3 Modifications in comparison to the SERS installation and programming manual

In the following documentation the "SERS installation and programming manual" (for SERS with RS232 interface) is named **SERS-manual**.

Following limitations and changes for the SERS...CAN version apply in comparison to the SERS with RS232 interface and the corresponding SERS-manual:

1. The baudrate can be adjusted via the 8-pole DIP-switch 1 (see page 11 and SERS-manual page 11 and page 15) with the bits 1 until 3 of the switch as follows:

Baudrate	20	50	100	125	250	500	800	1000
(KBaud)								
Bit 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Bit 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Bit 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON

 The connections of the 9-pole D-Sub-connector is as follows: Pin 2 : CAN_Low Pin 7 : CAN_High

Pin 3 : GND common ground

- 3. 7-segment-display
 - "1" The node is in "preoperational" state indication after power on
 - "2" CAN is initialised and the node is in "stopped" state
 - "3" The node is in "operational" state
 - "4" No CAN interface found on SERS (internal interface error)

All other indications on the 7-segment-display are as described in the SERS manual. Error messages, warnings and the ON-state ("5") overwrite the indications "1" until "4".

2. Assignment SERS parameter to the CANopen profile 2.1. Standard CANopen parameter

CAN standard		SERS parameter
Position actual value	6064	P51
Target_position	607a	P47
Software_position_limit	607d	
Min_position_limit		P1040
Max_position_limit		P1041
Profile_velocity	6081	P91 / V
Profile_acceleration	6083	P138 / A
Quick_stop_deceleration	6085	P1030
Motion_profile_type	6086	P1032
Gear_ratio	6091	
Motor_revolutions		P121
Shaft_revolutions		P122
Feed_constant	6092	P123
Homing_speeds	6099	
Speed_during_search_for_switch		P41
Speed_during_search_for_zero		P1003

2.2. Scaling

The scaling is defined in the manufacturer specific parameter as follows:

- scaling position data : SDO Index 2
- scaling velocity data
- : SDO Index 204c (SERS parameter P76)
- : SDO Index 202c (SERS parameter P44)
- scaling acceleration data : SDO Index 20a0 (SERS parameter P160)

All position, velocity and acceleration values are scaled depending on these parameters above.

2.3. Positioning modes

The SERS..CAN drive supports mode 1 "Profile Position Mode" and 6 "Homing Mode". These modes are documented in the "CiA Draft Standard Proposal DSP-402", "CANopen Device Profile for Drives and Motion Control".

In homing mode there is possible following "homing_method" (Index 0x6098):

- 1: Homing on the Negative Limit Switch
- 2: Homing on the Positive Limit Switch
- 3: Homing on the Positive Home Switch
- 5: Homing on the Negative Home Switch
- 17: Homing on the Negative Limit Switch, without Index (electrical zero phase)
- 18: Homing on the Positive Limit Switch, without Index
- 19: Homing on the Positive Home Switch, without Index
- 20: Homing on the Negative Home Switch, without Index

2.4. PDO data content and transmission types

The SERS...CAN drive supports 3 receive and 1 transmit PDO.

The PDOs are evaluated 1 time each 2ms cycle.

29 bit identifier are not allowed.

The COB-IDs of the PDO may receive only standard values:

1. Receive PDO: 0x200+NodeID

2. Receive PDO: 0x300+NodeID

3. Receive PDO: 0x400+NodeID

Transmit PDO: 0x180+NodeID

The transmit PDO may be set not valid (high bit of COB-ID is 1).

At the receive PDO the transmission type will be saved but not evaluated.

At the transmit PDO all transmission types are implemented except "REMOTE_UPDATE_SYNC" (252).

At the transmission types "ACYCLIC_SYNC" (0), "MANUFACTUROR_SPECIFIC" (254) and "DEVICE_PROFILE_DEFINED" (255) the PDO will be send in case of a data change.

Synchronous PDO are sent according to the set Sync-numbers, but only with an accuracy of 2ms.

Remote requests of the PDO is possible at the transmission Type "REMOTE" (253).

Inhibit times are evaluated.

The mapping of the PDO is fixed, and can be read only. Following adjustments are made:

- 1. Receive PDO: control word (6040), 16 Bit
- 2. Receive PDO: control word (6040), modes_of_operation (6060), 8 Bit
- 3. Receive PDO: control word (6040), target_position (607a), 32 Bit

Transmit PDO: Status word (6041), 16 Bit position_actual_value (6064), 32 Bit ENDSCHALTER_DIGIN (2420), 16 Bit, the limit switches are the high byte and Digin (digital inputs I1 until I8 of the SERS) are the low byte

2.5. NMT command-specifier

These telegrams ma be sent to one node or to all nodes simultaneously, to change the node status.

START_NODE	1
STOP_NODE	2
ENTER_PREOPERATIONAL	128
RESET_NODE	129
RESET_COMM	130

2.6. Node status

This status will be returned by the SERS...CAN drive with each requested node guarding telegram. The high bit is toggled.

BOOTUP	0
STOPPED	4
OPERATIONAL	5
PREOPERATIONAL	127

2.7. Abort Codes

In case a SDO transfer was terminated not correctly, then the reason for this transfer interruption can be read in the "abort code".

TOGGLE_BIT_NOT_ALTERED	0x05030000
SDO_PROTOCOL_TIMED_OUT	0x05040000
COMMAND_SPECIFIER_UNKNOWN	0x05040001
INVALID_BLOCK_SIZE	0x05040002
INVALID_SEQUENCE_NUMBER	0x05040003
CRC_ERROR	0x05040004
OUT_OF_MEMORY	0x05040005
UNSUPPORTED_ACCESS_TO_OBJECT	0x06010000
ATTEMPT_TO_READ_A_WRITE_ONLY	0x06010001
ATTEMPT_TO_WRITE_A_READ_ONLY	0x06010002
OBJECT_DOES_NOT_EXIST	0x06020000
OBJECT_CANNOT_BE_MAPPED_TO_PDO	0x06040041
PDO_LENGTH_EXCEEDED	0x06040042
PARAMETER_INCOMPATIBILITY	0x06040043
INTERNAL_INCOMPATIBILITY	0x06040047
ACCESS_HARDWARE_ERROR	0x06060000
DATA_TYPE_LENGTH_WRONG	0x06070010
DATA_TYPE_LENGTH_TOO_HIGH	0x06070012
DATA_TYPE_LENGTH_TOO_LOW	0x06070013
SUBINDEX_DOES_NOT_EXIST	0x06090011
PARAMETER_VALUE_RANGE_EXCEEDED	0x06090030
PARAMETER_VALUE_TOO_HIGH	0x06090031
PARAMETER_VALUE_TOO_LOW	0x06090032
MAX_IS_LESS_THAN_MIN	0x06090036
GENERAL_ERROR	0x08000000
DATA_NOT_STORED_OR_TRANSFERED	0x08000020
DATA_NOT_STORED_LOCAL_CONTROL	0x08000021
DATA_NOT_STORED_WRONG_STATE	0x08000022
OBJECT_DICT_CREATION_FAIL	0x08000023

2.8. Emergency data content

Emergency telegrams are sent by the SERS...CAN drive without having been requested in case of any change of the error situation. That the telegram will be sent also in case the drive turns to a status of no error.

The first 2 bytes content the "Error Code". The next Byte is the "Error Register", which can be read also via Index 1001.

Then the customer specific contents follow: 1 byte "errno", 2 bytes "state class 1" (SERSerrors = SERS parameter P11) and 2 bytes "state class 2" (SERS-warnings = parameter P12).

0x0000
0x1000
0x2000
0x2100 //Current, device input side
0x2110 //Current, device input side
0x2200 //Current inside the device
0x2300 //Current, device output side
0x3000
0x3100
0x3200 //Voltage inside the device
0x3300
0x4000
0x4100
0x4200
0x5000
0x6000
0x6100
0x6200
0x6300
0x7000
0x8000
0x8100
0x8110 //CAN Overrun (Objects lost)
0x8120 //CAN in Error Passive Mode
0x8130 //Life Guard Error or Heartbeat Error
0x8140
0x8200
0x8210 //PDO not processed due to length error
0x8220
0x9000
0xf000
0xff00

2.8.1. Emergency Error Code (further codes in DSP402)

2.8.2. Error Register

GENERIC	0x01	//general error
CURRENT	0x02	//short circuit power amplifier or motor
VOLTAGE	0x04	//error under voltage
TEMPERATURE	0x08	//error over temperature
COMMUNICATION	0x10	//communication error (overrun, error state)
PROFILE_SPECIFIC	0x20	//device profile specific
RESERVED	0x40	//reserved (always 0)
MANUFACTOR_SPEC	0x80	

2.8.3. Error numbers "errno"

- 1: to big
- 2: to small
- 3: not valid
- 4: invalid output
- 5: EEPROM storage full
- 6: EEPROM acknowledge timeout
- 7: EEPROM no acknowledge
- 8: EEPROM no page begin
- 9: run decimal constant to small
- 10: decimal constant to big
- 11: unknown if event
- 12: admission refused
- 13: Parameter not existing
- 14: adc expected
- 15: end of text expected
- 16: input text only in pgm mode
- 17: text to long
- 18: [decimal constant pgm psave] expected
- 19: * permitted only at P1 or z
- 20: data or z expected
- 21: command expected
- 22: programming mode not active
- 23: if expected
- 24: if event expected
- 25: goto or gosub or GT or GS expected
- 26: goto or gosub expected
- 27: goto expected
- 28: goto decimal constant expected
- 29: gosub expected
- 30: gosub decimal constant expected
- 31: [return RT run rs rf] expected
- 32: return expected
- 33: [decimal constant list ls lf] expected
- 34: = or ? expected
- 35: [decimal constant on off] expected
- 36: decimal constant or n expected
- 37: decimal constant expected

Stögra

38: run expected

- 39: [new, neg, not] expected
- 40: new or neg expected
- 41: list expected
- 42: quit expected
- 43: off expected
- 44: program still running
- 45: pgm expected
- 46: Programming mode not active
- 47: del expected
- 48: data expected
- 49: change: only constant allowed
- 50: decimal constant or pos expected
- 51: pos expected
- 52: psave expected
- 53: [tr tron troff] expected
- 54: program not running
- 55: troff expected
- 56: ver expected
- 57: 1, 2, 3 or 4 expected
- 58: pos or possave expected
- 59: lp expected
- 60: possave expected
- 61: data or parameter expected
- 62: semicolon not allowed
- 63: not expected
- 64: not known status
- 65: program start not possible when service switch is ON
- 66: programmstart not possible, error P11
- 67: stop switch is active
- 68: stop switch is open
- 69: not valid program existing
- 70: drive must stand still
- 71: unknown destination
- 72: destination not valid
- 73: Stack overflow
- 74: unknown Opcode, forgot return ?
- 75: unknown fxxx Opcode
- 76: invalid Opcode for destination address
- 77: unknown f7xx Opcode
- 78: limit switch open
- 79: drive not enabled (OFF)
- 80: unknown positioning mode
- 81: drive must run constant or stand still
- 82: invalid EEPROM mode value
- 83: label already defined: L
- 84: position difference to big
- 85: new position to big
- 86: new position to small
- 87: new residual position to short
- 88: compare position 1 is to big

Stögra

89: compare Position 1 is to small

90: compare Position 2 is to big

91: compare Position 2 is to small

92: new modulo value is to big

93: not writable, during drive is positioning

94: solder bridge is set wrong for this range

95: negative software limit position is bigger than positive position

96: exponent to big

97: exponent to small

98: calculation result is to big

99: calculation result is to small

100: calculation result is to big to be displayed

101: calculation result is to small to be displayed

102: division through 0

103: bus stopbit is active

104: subindex not existing

105: value can not be written

106: value can not be read

107: Polynom with backlash not allowed

108: Missing Polynom data for next section

109: Wait expected

110: <=0 expected

111: =0 expected

112: 0 expected

113: 0 or 1 expected

114: > expected

115: 1 expected

116: = expected

117: 3 expected

118: Polynom end to short for deceleration (false definition of polynom section)

119: A to small

120: A to big

121: V to small

122: V to big

3. Terminating resistor 120 Ohm

In case of more participants at the CANopen bus only the last participant may have a 120 Ohm terminating resistor between the connecting pins CAN_Low (9-pol. D-SUB pin 2) and CAN_High (9-pol. D-Sub pin 3).

On the SERS the terminating resistor can be activated via a jumper – see figure below.

Jumper set: 120 Ohm terminating resistor in CANopen Bus Jumper not set: no terminating resistor